ADDENDUM TO: NATIONAL ZOOLOGICAL PARK, REPTILE HOUSE (Reptile Discovery Center)
3001 Connecticut Avenue, Northwest
Washington
District of Columbia

PHOTOGRAPHS
COLOR TRANSPARENCIES
WRITTEN HISTORICAL AND DESCRIPTIVE DATA
REDUCED COPIES OF MEASUREMENT DRAWINGS
FIELD RECORDS

HISTORIC AMERICAN BUILDINGS SURVEY
National Park Service
U.S. Department of the Interior
1849 C Street NW
Washington, DC 20240
Location: The main entrance to the National Zoological Park is located at 3001 Connecticut Avenue, NW, Washington, D.C. The Reptile House is located along a pedestrian walkway known as Olmstead Walk, east of the main entry and south of North Road that runs along the perimeter of the zoo and parallel to Rock Creek.

The front entrance of the Reptile House at the National Zoological Park is located at 38.929759, -77.047527. These coordinates were obtained on March 29, 2018 using Google Earth (WGS84). The Reptile House’s location has no restriction on its release to the public.

Present Owner: Smithsonian Institution, National Zoological Park.

Present Use: Exhibit space for the National Zoological Park’s collection of reptiles.

Significance: During his tenure as Director of the National Zoological Park (1925-1956), Dr. William M. Mann sought to transform the zoo from a menagerie-style collection of animals to a world-class zoo fitting of its status as a national institution. The first National Zoo buildings of the late nineteenth century, following its founding in 1889, were built at a time when little was known about how to properly care for exotic animals in captivity. However, by the time Mann became director of the zoo in 1925, zookeepers had introduced scientific approaches to their profession, and were carefully monitoring the environment of their animal charges. Therefore, when Mann constructed new buildings at the park, the architecture reflected these methods. The Reptile House, completed in 1931, provided then state-of-the-art environments for reptiles in captivity, in addition to optimal enjoyment for the Zoo’s visitors.

The design of the Reptile House evoked scientific progress, world exploration, and a fascination with the bizarre. Its grand brick façade was a departure from the earlier zoo buildings that blended into the Rock Creek Park landscape, but a continuation of the collaboration between Director Mann and the Washington, D.C. Municipal Architect Albert Harris, who together developed the Zoo’s Bird House, in 1928). The Reptile House’s exterior is decorated with cast stone snakes, lizards, and frogs, as well as a colorful prehistoric scene in concrete mosaic above the front door that blend with the brick Byzanto-Romanesque design. Noted naturalist artists and landscape designers created these features, as well as vignettes inside each cage of both far-off jungles and the local habitats of
reptiles found in the mid-Atlantic. Each cage was designed not only to look like a diorama of the environment from where the reptile came, but to simulate the environmental conditions. The state-of-the-art design permitted the reptiles to receive ultraviolet light from skylights and halogen bulbs, while the visitors enjoyed heating and cooling separate from the reptiles. This attention to detail ensured that the building was as much about recreation and the pleasure of its visitors as it was about providing a quality environment for the reptiles. The Reptile House became a model for other American zoos throughout the 1930s, demonstrating that the National Zoological Park was indeed becoming a first-rate public institution.

Part I: Historical Information

A. Physical History

1. Date of erection: The Reptile House was completed in 1931. The majority of the construction took place between 1929 and 1930; however the interior was still under construction until late January 1931. While other sources state the building was completed in 1930, this report takes the view that the building was not completed until the interior was finished in 1931. A reception was held on Friday, February 27, 1931 to open the Reptile House to the public.¹

2. Architect: The architect for the Reptile House was Albert Harris (1869 – 1933). Harris was born in Wales and began working in Washington, D.C for the firm Hornblower and Marshall in 1900. Harris gained experience designing for the Smithsonian Institution during his time there, as the firm designed the Smithsonian Institution Natural History Building. Harris became chief designer for Hornblower and Marshall in 1908 and Partner in 1911. The American Institute of Architects inducted Harris as a member in 1920 and a fellow in 1933. Harris took the position of Municipal Architect for the District of Columbia from 1921 and served in the role until his death in 1933. During his tenure, Harris was the National Zoological Park’s architect and designed both the Bird House (1928) and the Reptile House, as well as a mammal house that was never constructed. Other

¹ Heather Peale Ewing states that the Reptile House was constructed in 1929-30; however, a Washington Post article states that contractors were rushing to complete the building – including painting, and construction of reptile enclosures – in January 1931 before it opened to the public on Friday, February 27, 1931. Therefore, this report takes the view that the building was completed in 1931. On the construction progress and opening of the Reptile House, see “Work on Reptile House at Zoo Will Be Rushed,” Washington Post, January 26, 1931, Box 136, Entry 97, Project Files 1910-1956, RG 66, National Archives and Record Administration, Washington, D.C. (Hereafter Box 136, Entry 97, RG 66, NARA, Washington, D.C); and “New Reptile House at National Zoo to be Exhibited Friday,” Washington Post, February 23, 1931, Box 136, Entry 97, RG 66, NARA, Washington, D.C. For Ewing’s description of the Reptile House, see Ewing, Albert Harris: Visionary of a Modern Zoo,” Smithsonian Preservation Quarterly, The Office of Architectural History & Historic Preservation, Spring 1993, 4.
examples of Harris’s work from his time as Municipal Architect include Roosevelt High School, Charles Young Elementary School, and the water tower at Fort Reno Reservoir.\(^2\)

3. Original and subsequent owners, occupants, uses: The Reptile House continues to house and exhibit the National Zoological Park’s reptile collection as it did when the Reptile House opened in 1931 and the exhibit spaces and uses have remained largely the same. Exceptions include conversion of the basement of the Reptile House into an invertebrate exhibit for several years, additions of a greenhouse in the rear elevation, and outbuildings to house the Komodo dragon exhibit. Harris designed the second floor as lab space and it is currently used as office and breakroom space for the Reptile House employees.

4. Builder, contractor, and supplier: Albert Harris, Municipal Architect of the District of Columbia completed the Reptile House plans in 1929 and construction began in March, 1930.\(^3\) The Municipal Architect’s office awarded the contract for building the Reptile House to North-Eastern Construction Company, Engineers and Contractors of Baltimore, Maryland.\(^4\) North-Eastern Construction subcontracted suppliers, lighting, furnishings, and artists to supply materials, furnish and decorate the building. Subcontractors included:

T. E. Morgal of Washington, D.C. to “furnish all Medusa cement, Ironite, piping and valves necessary for the […] construction of small pools and certain rock work in the portable cage.”

Hans Jensen Manufacturing Company of Chicago Illinois to create custom aquariums and cages.

\(^3\) 1930 Smithsonian *Annual Report*, 100.

\(^4\) Although the contract between the National Zoological Park, the Municipal Architect’s office and North-Eastern Construction was not found, correspondence between North-Eastern Construction Co., the Municipal Architect’s Office, and William M. Mann, suggests that North-Eastern Construction Co. was the primary contractor responsible for building the Reptile House. Evidence for the building contractor are receipts, references in letters, and references to the request for bids on building the Reptile House. For example the request for bid document states that the contractor must reserve three thousand dollars for the employment of an artist, “to be scheduled by the Municipal Architect, who shall execute certain paintings and mural decoration at the backs for cages as will be directed by the Municipal Architect.” A later document shows North-Eastern Construction communicating with Director William Mann regarding the hiring of artists and other sub-contractors. See Letter from S. B. Walsh, Assistant Municipal Architect, D.C. to North-Eastern Construction Company, correspondence, February 18, 1931, record unit 74, NZP 1887-1965, box 225, SIA [hereafter correspondence in this group, RU 74, box 225, SIA]. On the contract bid specifications see Albert L. Harris, “Specifications for the Construction of an Exhibition Building for Reptiles, Etc.” (Municipal Architect, D. C., December 12, 1929), RU 74, box 226, SIA.
National Electrical Supply Company of Washington, D.C. to provide ‘Model D GE Sunlamps.’

Artists R. Bruce Horsfall and Elie Cheverlange were subcontracted to paint cage backgrounds.5

The Municipal Architect’s office procured paint from the suppliers Miller & Graham in Baltimore, Maryland; H. B. Davis Co, Baltimore, Maryland; and Varcraft Works, Inc. Pottstown, Pennsylvania. Vita-Glass was also used in the construction, though the supplier is unknown. The National Zoo also executed a contract with Bavis-Crawford Company in Washington, D.C. for Pneumatic Temperature Control System for $5,995.00.6

As noted above, artists were employed to paint backgrounds inside reptile habitats, as well as create scenes with rock, concrete, and plants. Artists associated with the project (in order of their contributions) included John Joseph Earley, Charles R. Knight, R. Bruce Horsfall, and Elie Cheverlange.

John Joseph Earley (1881-1945) was pioneer in concrete and provided the polychrome concrete work of the main entrance. Born in New York City, Earley worked with his father to learn stone work. Earley ran a studio in Washington, D.C. where he invented a mosaic concrete that mimicked more expensive mosaic techniques. His work includes Meridian Hill Park (1916), East Potomac Park Field House (1919), and the Department of Justice (1933) as well as the Bird House (1928) at the National Zoo, and can be seen in vernacular architecture in Washington, D.C.

Charles R. Knight (1874 - 1953) designed the stegosaurus motif above the main entrance door and the rock work and landscape of the crocodile enclosure.7 Inside the crocodile enclosure, Knight planned a “steep gravel and earthy bank,” with “rounded boulders which would appear to have dropped down from the sides, then a smooth sand and fine gravel bed on which the creatures can rest when out of the water.” His landscape design included hanging “vines and flowers, the vines hanging down over the edge and making the back-ground.”8 Knight was an illustrator from Brooklyn, New York who was admired for his paintings of

5 On hiring Elie Cheverlange, Bruce Horsfall, T. E. Morgal, see S. B. Walsh to North-Eastern Construction Company, Correspondence, February 18, 1931, RU 74, box 225, SIA; regarding construction of cages see Hans C. M. Jensen to William, correspondence, January 2, 1931; on the lighting specifications, see receipt between National Electrical Supply and Northeastern Construction Co. “2 Bracket Type GE Model D GE Sun Lamps”; For the contractor bid specifications, see Harris, “Specifications for the Construction of an Exhibition Building for Reptiles, Etc.”

6 On the contract with Bavis- Crawford, see Unknown to Dr. Mann, correspondence, May 27, 1931, RU 74, box 225, SIA. On the use of Vita-Glass, see Mann to Mrs. Frederic C. Johnson, correspondence, November 30, 1932, RU 74, box 225, SIA.

8 Charles Knight to William Mann, correspondence, August 11, 1930, RU 74, box 225, SIA.
dinosaurs and prehistoric animals. His work continues to fill imaginations and bring life to extinct animals, as his work is still on display in museums and zoos including the Field Museum in Chicago, Illinois, and in New York City the American Museum of Natural History and the Bronx Zoo, which all commissioned Knight’s murals. Knight would design these large works in smaller scale to be reproduced in mural size by artisans. This was the case with the Stegosaurus on the front of the Reptile House, which Knight referred to as a “cartoon,” and the crocodile enclosure. Knight asked Mann for the dimensions of the crocodile habitat. Knight later provided artwork in the Elephant House in 1935, where he was hired under the Treasury Relief Art Project (TRAP) program.

Elie Cheverlange painted reptile cage backgrounds in 1931. He was awarded $200 for “furnishing necessary paint material and for continuing painting of the cage backgrounds.” Cheverlange was a well-known naturalist and artist whose work appeared in books and museums. Cheverlange also worked with Mann to illustrate his book, *Monkey Folk*.

R. Bruce Horsfall (1846-1948), staff artist of Nature Magazine, painted two panoramas inside the Reptile House. The first was a background for the tortoise collection, which featured a Galapagos and Indefatigable Island scene. The second was a background inside a large lizard collection cage that depicted Komodo Island. His drawings were sought after in scientific magazines, books, and articles as well as in habitat displays at the American Museum of National History, in New York City.

5. **Original Plans and Construction:** Municipal Architect Albert Harris completed designs for the Reptile House in 1929 and they were tentatively approved by the Commission of Fine Arts, who has authority of the design and aesthetics of all construction within Washington, D.C., on September 10, 1929. The design of the

11 Cheverlange is seen in an historic photograph painting a reptile enclosure in the new Reptile House. See, *Artist Elie Cheverlange Painting Background in Reptile House*, 1931, Glass Negative, 1931, 14-167 - National Zoological Park (U.S.), Historical Photograph Collection, c. 1891-1996, SIA. Regarding Cheverlange’s contract with the Zoo to paint reptile enclosure backgrounds, see Walsh to North Eastern Construction Company, correspondence, February 18, 1931, RU 74, box 225, SIA.

13 For descriptions of Horsfall’s artwork in the Reptile House, see *Annual Report Smithsonian Institution 1932*, 60; Hamlet, “The National Zoological Park - From Beginnings to 1973,” 157; and Walsh to North Eastern Construction Company, correspondence, February 18, 1931, RU 74, box 225, SIA.

Second front entrance on the Southwest elevation was approved by the Commission on October 17, 1929. National Zoo Director William Mann oversaw the design and construction of the Reptile House and worked with Harris to ensure it was a state-of-the-art building. The original construction was informed by Mann and Harris’s 1929 ten-week trip to Europe and Great Britain, during which they toured Zoological parks. Mann and Harris noted the scientific advances of the London Zoo Reptile House, which used materials like ultraviolet lights to simulate sunlight and Vita-Glass to allow UV rays to pass through them into the reptile enclosures. Another important innovation was using separate climate control in the cages and tanks from the visitor areas, which ensured that the visitors were kept cool while the cold-blooded reptiles were kept warm. Mann and Harris designed the reptile house at the National Zoological Park to rival the world’s leading zoos in both decoration and technological advances.

Although a stylistic departure from the Zoo’s first permanent structures, the Reptile House is similar in design the Bird House (1928), which was also a collaborative design of Mann and Harris. The Reptile House has a rectangular, church-like footprint with characteristics of the Romanesque and Byzantine styles. The features on a typical Romanesque church such as gargoyles and decoration, religious mosaics within a semi-circle transom are replaced on this building with amorphous reptiles and polychrome motifs. The Reptile House was considered unique and technologically advanced. The American Institute of Arts, 1929 and the second front entrance on the Southwest elevation on October 17, 1929. It is unclear what the original plans were for the right Southwest elevation door, as the first drawings submitted to the Commission of Fine Arts for review were not found within the National Archives and Records Administration (NARA) collection or the Smithsonian Institute Archives (SIA). The current right front door is identical to the one that appears in the December 9, 1929 architectural drawings. Additional correspondence between Charles Moore, Chairman of The Commission of Fine Arts, and the Board of Commissioners of the District of Columbia L. Dougherty. The letter was written from Dougherty to Moore on September 27, 1929, stating that The Board of Commissioners of the District of Columbia had received the Commission’s letter of September 16, 1929, “advising that the Commission of Fine Arts has tentatively approved the design for the Reptile House, with the understanding that the interior arrangements will be given further study.” Letter, Commission of the District of Columbia Executive Office, Washington D.C., September 29, 1929, signed Proctor L. Dougherty, President. Project Files 1910 - 1952, Record Group 66, Entry Number 17, Box 136. The Commission’s letter says “The Commission of Fine Arts, at their meeting on September 29, considered the design submitted in your behalf by Mr. A. L. Harris, Municipal Architect, for the Reptile House, to be erected in the Zoological Park, and approved it tentatively. The commission felt the door to the right of the main entrance to be somewhat too prominent; also, it is understood the interior arrangement will be given further study.” The location of the building was also taken into consideration at this time in conjunction with an expansion of the National Zoological Park toward Piney Branch Parkway toward Sixteenth Street. The Commission felt that visitors should park at the entrance and walk to the exhibits, thereby eliminating cars inside the Zoological Park. See, Minutes, Commission of Fine Arts, September 10, 1929, RG 66, National Archives and Record Administration, Washington, D.C. [Hereafter RG 66, NARA, Washington, D.C.].

The Commission of Fine Arts generally approved the initial plans for the Reptile House in on September 10, 1929 and the second front entrance on the Southwest elevation in October 17, 1929. William M. Mann, “A Visit to European Zoos,” Explorations and Field-Work of the Smithsonian Institution in 1929, 1930.

16 William M. Mann, “A Visit to European Zoos,” Explorations and Field-Work of the Smithsonian Institution in 1929, 1930.

Architects called it the ‘Best Brick Building of the Year’ and stated “it was unlike anything in any European garden.” Mann stated the design was meant to marry entertainment, recreation, education, and science. Moreover, the interior demonstrated the application of innovations Mann observed while visiting the London Zoo. The London Zoo Reptile House and the National Zoo Reptile House are very similar. Both reptile houses have walls lined with cages, so the visitors walk in an oval and observe the animals on either side. The visitors in these halls walked in near darkness while the glass cages were lighted, in what has been referred to as the ‘aquarium principle.’ The two reptile houses also feature skylights that were meant to provide helpful ultraviolet rays to the reptiles, as well as light for the work spaces. Even the dimensions of the two buildings are the same, at 82’ x 200.’

Mann and Harris’s original plans also included artwork and decoration of the exhibits. The zoo set aside funds to paint backgrounds on the cages, create rockwork, and provide landscape design inside the crocodile swamp. Each cage and aquarium was developed as a living diorama of the reptiles’ natural habitats, both for the visitor’s pleasure and the reptiles’ comfort. The building opened to visitors in February 1931.

6. Alterations and additions: Improvements and repairs to the Reptile House began only a year after the building was open to the public. The alligator and crocodile enclosure experienced leaking and Mann called upon the building’s architect, Albert Harris, to inspect and fix the enclosure. The Zoo’s Chief of Construction and Maintenance found a “longitudinal-vertical crack in the wall between the public exhibit space and the alligator-crocodile pools.” They believed it was evidence of a structural weakness in the space which might result in a leak or even collapse of the pool. The handrail was also a problem. Correspondence

20 Hanson, Animal Attractions, 155-156. On the other hand, Gavin Farrell in his “Historic Resource Analysis” states that the similarity to the Bird House demonstrates that the architectural style of the Reptile House was predetermined when the Europe trip of 1929 commenced. He believes the “arrangements of the cages, skylights, and keeper areas may well have been influenced by the European experience; but the architectural style to be employed was already chosen.” Farrell “Historic Resource Analysis,” 141.
21 Funds for artwork were set aside in the request for bid, Harris, “Specifications for the Construction of an Exhibition Building for Reptiles, Etc.” and are referenced in correspondence, Walsh to North-Eastern Construction Company, correspondence, February 18, 1931, RU 74, box 225, SIA.
22 Hanson remarks that more so than another National Zoological Park building, the Reptile House resembled natural history museums of the 1930s. The artists Cheverlange, Knight and Horsfall also painted diorama backgrounds at Natural History Museums. See Hanson, Animal Attractions, 155-156.
24 “Dear Mr. Harris: Apropos of our telephone conversation with you some time since in regard to the condition in the alligator tank in the reptile house, our Chief of Construction and maintenance and M. E. P. Walker have made the enclosed report. According to the enclosed report it is apparent that something should be done in regard to strengthening the supports of this pool and we would appreciate it very much if you would examine it.” William M. Mann to Albert L. Harris, correspondence, December 29, 1932, RU 74, box 225, SIA.
25 Peter Helt and EP Walker to William Mann, correspondence, December 22, 1932, RU 74, box 225, SIA.
26 Peter Helt and EP Walker to William Mann, correspondence, December 22, 1932.
indicates that Mann believed the handrail in front of the exhibit cages (no longer in place) had insufficient support, however the Municipal Architect’s office was reticent to change it.27 The handrail was left in place until 1979.

Unlike some Zoo buildings, the Reptile House received sparse attention in the Depression years. Between 1932 and 1950, the Zoo added a new enclosure on the south side of the building, concrete resurfacing behind the Reptile House, and V-gutters in front of the cages.28 In 1952-53, the Reptile House heating and ventilation system was renovated. However, by 1960 the building was nearly 30 years old, and in need of more serious and regular renovation. That year, $130,000 in appropriations was awarded for zoo maintenance for the Reptile, Elephant, and Small Mammal Houses. The appropriations were used to repair the Reptile House roof and make safety improvements.29 Unfortunately, all of the original artwork by Knight, Cheverlange, and Horsfall was either removed or painted over between the mid-1950s and early 1960s.30

In 1961 the plaster ceiling was sprayed with an acoustical compound to deaden the echo caused by the arched plaster ceilings.31 The compound is still present on the ceiling and has a highly textured and insulation-like appearance. The alligator and crocodile exhibit was renovated for safety and aesthetic reasons.32 Renovations included removing the old coping and replacing all plate-glass cage fronts with new laminated safety glass. An “A 42” guard rail prevented the visitors from tapping on the glass.33

The most drastic renovations occurred between 1979 and 1981. The firm Wilkes & Faulkner was hired to complete a series of renovations. The front entrance was altered to make it handicap and stroller accessible. The stairs were demolished and a square vestibule was added at a 45 degree angle to the walls of the hall. The original front doors were removed and replaced with modern glass and steel doors. Today they have electronic alarms and require badge access. At this time, the brick-like tile floor was laid, the dumbwaiter was demolished, the brass railings were removed, the basement was remodeled into a nocturnal exhibition, and new sprayed concrete animal exhibits were added.

The outdoor crocodile enclosure, the awning in front of the crocodile enclosure, outdoor tortoise area, and the outbuildings for the Komodo dragon are all

27 Walsh to Mann, correspondence, July 10, 1931, RU 74, box 225, SIA.
28 1941 Smithsonian Annual Report, 78; 1950 Smithsonian Annual Report, 92.
29 Hamlet, “The National Zoological Park - From Beginnings to 1973,” 267;
31 1961 Smithsonian Annual Report, 175.
32 Farrell “Historic Resource Analysis,” 143. Farrell references the 1953 Lion house tragedy, in which a two-year-old girl was killed by the Zoo’s lion, as an impetus for safety improvements.
33 1962 Smithsonian Annual Report, 176.
additions to the Reptile House. The outdoor exhibits were added in 1981.34

A hexagonal room, now referred to as the resource room, was created in 1984 by walling off a hallway between the two interior exhibit rooms.35 The bathrooms, shower rooms, kitchen, and separate offices created by partitions in the area that was designated as office and laboratory space are modern renovations as well.

The original chimney was used for the boiler system but subsequent renovations have rendered the chimney merely ornamental. The basement was redesigned in 1986 to house an invertebrate exhibit. An attached greenhouse, accessible by the invertebrate exhibit, was added in 1991.36 The Invertebrate exhibit closed 2014 and the space was renovated for use by the National Zoo police in 2018.

The building envelope was renovated in 2005-2008 by Quinn Evans Architects. Renovations included replacing the roof pavers; removing and replacing the entire skylight assembly and iron purlins, and the skylights and window sashes; adding an aluminum screen below the skylights; refurbishing metal door and window frames; removing and replacing doors with new, fireproof doors; removing existing glazing and replacing it with clear single pane glass; and refurbishing the window sash. In addition, plaster was repaired and repainted, as was the exterior window assembly.37

B. Historical Context:

From its beginning in 1889, the National Zoological Park has been committed to scientific research, conservation of wildlife, and recreation for its visitors. The balance between these commitments shifted over time based on the public needs and appetite for supporting public institutions, and the architecture in the zoo has reflected these interests. In the late nineteenth century interests skewed toward public recreation and animal conservation, as there was much to learn about how to care for animals in captivity. Furthermore, the National Zoo and its Rock Creek Park setting appealed to the Victorian-era public because its open green space provided them with an escape from city life. Urbanites visited the Zoo to view the bison and a naturalistic environment that Americans feared would soon be extinguished from North America. The buildings were modest, unadorned, and rustic in style, blending with the picturesque landscape. While the Zoo evoked ideas of nature for its urban visitors, the setting was not the natural habitat for many of the Zoo’s animals. The Zoo’s early collection contained some animals native to Rock Creek Park, including raccoons, squirrels, and an opossum, but it also included animals from Brazil, Tasmania, and the Galapagos.38

34 1981 Smithsonian \textit{Annual Report}, 115.
35 1985 Smithsonian \textit{Annual Report}.
36 Murphy and Xanten, “Seventy-Five Years of Herpetology at the Smithsonian’s National Zoological Park: The Facilities, Collection, People, and Programs,” 264.
In the first decades, the Zoo experimented with the natural landscape to create animal habitats. For example, the Zoo successfully used a creek tributary for their beaver exhibit in an attempt to eschew the menagerie aesthetic of nineteenth century zoos. However, despite the Zoo’s intentions to emulate a wildlife preserve rather than a circus, as had been previously customary, historic photographs show some animals in a menagerie-like setting with barred cages and small habitats. A photograph, dated 1900, shows the Zoo’s collection of alligators and crocodiles in an indoor concrete cage featuring a pit with steps up to a platform, encircled by metal bars. The exhibit is small with several animals sharing the space and has no features that resemble a crocodile’s natural habitat. It was not until zoology was professionalized and technological advances in building design were made in the 1920s and 1930s that zoo habits became more sophisticated in design, and subsequently more humane.

By the time William Mann became director of the National Zoo in 1925, modest scientific advances provided new understanding of what was needed to recreate animal habitats in zoos. Dr. William Mann became director of the National Zoo 1925 at the age of 39. Prior to becoming director Mann received a Ph.D. from Harvard University, worked for the federal government as an entomologist, and attended several expeditions to collect and study animals. In addition, Mann was a member of naturalist and zoology societies that aimed to professionalize zoology and the study of animals, including reptiles. His experience provided him with a vast understanding of what was needed to care for animals in captivity, and he petitioned for appropriations to cover the costs of constructing new buildings that would provide better homes for his collections.

The need for a reptile house began with the growing population of them at the Zoo. While the Zoo accepted donations of reptiles, batrachians, and insects, it had not made specific appeals for donations of reptiles and had no permanent or suitable place to exhibit them. Furthermore, life expectancy of cold blood animals was short in captivity before specially designed cages were conceived to simulate their natural environments.

In a 1927 Annual Report of the Smithsonian Institution, Mann stated that, “To a large

40 Unknown, Alligators, 1900, Photographic Print, RU 95, box 46, folder 1, SIA, https://siarchives.si.edu/collections/siris_sic_5991.
41 Dr. William Mann became Zoo Superintendent in 1925 and the position was later renamed ‘Director’ in 1926. His experience also included expeditions to South America as a member of the Stanford Expedition in 1911, field work in Haiti, Cuba and Mexico in 1912, and served as assistant director of the Mulford Biological Expedition to the Amazon Basin in 1921-22. “150 Years of Smithsonian Research in Latin America” Smithsonian Archives , accessed February 28, 2018, https://siarchives.si.edu/history/featured-topics/latin-american-research/william-and-lucile-mann
42 Dr. William Mann became director of the National Zoo in 1925. Mann sought to grow the zoo’s animal collection through calls for gifts to the zoo and expeditions. “The Zoo sent a circular to officials abroad requesting animals and giving instructions for their care and shipping. The Smithsonian-Chrysler expedition increased the animal collection significantly. See Mann, “A Brief History of the Zoo” and Leonard H. Gerson, Urban Historian, NCPC, preparer, "National Zoological Park," Nomination 1973, National Register of Historic Places, National Park Service, sec. 7.
43 Mann praises the London Zoo for using infrared light and Vita-glass in its Reptile House exhibit for the chameleon and ‘Komotu’ dragon, which zoo keeps had previously “considered delicate, living, not for a few months, but for years. See W. M. Mann, “A Visit to European Zoos” 1930. 47-48,
extent, the animals have still to be kept in temporary quarters which are insufficient and unsuitable and are costly to maintain because of the repairs which are constantly required.” Mann went on to say that while he had repeated this statement yearly since 1910, it applied “even more to-day.”44 Mann also knew that zoo buildings were not just habitats for his animals, they had to draw in as many visitors as possible to demonstrate the Zoo’s popularity, which in turn warranted appropriations. In the same annual report Mann made a specific appeal for a reptile house:

Ever since 1910 appeals have been made for an exhibition house to contain reptile, batrachians, and insects. In addition to having probably more educational value than any other exhibition, such a house has always been popular with the public in zoos where they exist; so popular, in fact, that in certain zoological parks where admission is required, an extra admission is charged for entry into the reptile building. Here in Washington, visitors repeatedly ask the location of such a building.45

Dr. Mann ensured that the reptiles were housed under conditions as close as possible to their real environments. That included adding plants and rockwork to cages. Mann employed a Washington florist and landscape architect to “arrange the interior of some of the cages in a natural manner with rock work and growing plants.” He stated on a radio broadcast he “found that certain animals thrive much better when they live among plants and each cage has been designed so that it can be used as a little conservator as well as a little reptiliary.”46

Mann wanted to capitalize on the popularity of reptile exhibits, knowing that snakes, turtles and lizards in zoos drew large crowds, despite the lack of a ‘warm’ image that mammals traditionally enjoyed. The fascination with Reptiles was perhaps similar to the draw to see lions and bears; the chance to see a rare and dangerous animal in a controlled and safe setting. Even with the public interest in reptiles, Mann stated in a CBS radio broadcast that he feared a reptile house it would be the “hardest to get” and therefore he asked Congress for the funds to construct the Reptile House early in his building program. Mann was right to do so as the “idea of spending a large sum of money on a building in which to house snakes at first [was] met with violent opposition.”47 However, Mann’s appeals for appropriations in the 1920s were finally successful and he began a building program that included a new bird house and reptile house. After the initial construction of the Bird House was completed in 1928, Mann turned his attentions toward the Reptile House.

Completed just as the Great Depression began, the Reptile House was not one of the New Deal constructed facilities in the Zoo. Therefore, it neither suffered from lack of appropriations nor benefitted from the influx of Public Works Administration (PWA)

46 “A New Home for Reptiles,” December 19, 1930, Radio CBS.
The building was completed with appropriations that had been reserved for the building before the Depression began. The rest of Mann’s building program, which included a new Elephant House (1935) and an addition to the Bird House was put on hold until the Treasury Department allotted PWA funds. In Mann’s “A Brief History of the Zoo” he wrote that

In 1935 the Zoo had a great stroke of good luck [when] the Public Works Administration allotted $680,000 and followed the next year with $191,000 with which were constructed machine shops, a central heating plant and working facilities, a small mammal house, and a pachyderm house; the bird house was completed, thus giving the Zoo four of the best buildings in the world.49

The New Deal programs PWA and Treasury Relief Art Project (TRAP) funded buildings and artwork in zoos across the United States at levels that were unimaginable prior to the Depression.50

Another reason Mann pushed for a Reptile House was his own interest in species and a desire to educate the public about them. As a member of the Herpetological, Ichthyology, and Vivarium Societies, Mann had a personal and professional interest in the animals but knew that the greater public did not care for the animals nor did they know which species were poisonous. Mann stated in his radio broadcast on the opening of the building that very few people knew much about snakes, or even “the difference between a snake and a lizard.”51 Believing that “familiarity can create interest,” he hoped Americans who visited the Zoo would gain respect for them reptiles and fear them less.52

Municipal Architect of Washington D.C. Albert Harris took into account the need to provide education, recreation, and suitable habitats in his design of the Reptile House and created a building that attempted to balance these interests. The result was a departure from the earlier zoo plan and architecture. Whereas the architecture of the Olmsted plan blended into the natural landscape of Rock Creek Park, Mann’s new building plan of the 1920s and 1930s used ornament “as a communicative device.”53 In addition, Frederic Law Olmsted “was opposed to too many large animal houses consuming the precious green space” and disliked European zoos for their decorative architecture; however, Mann looked to European zoos for models of architecture and advances in zoology.54 Mann, along with his wife Lucile and architect Albert Harris, embarked on a ten-week

48 Price, Bird House, No. DC-777-D; Elephant House No. DC-777-C.
49 William Mann, “A Brief History of the Zoo,” 357.
50 Jesse C. Donahue and Erik K. Trump discuss the impact of the New Deal on American zoos in Donahue and Trump, American Zoos During the Depression: A New Deal for Animals, (Jefferson: McFarland, 2010).
53 Hanson, Animal Attractions, 22. In particular Olmsted disliked the London Zoo for its urban and crowded setting, large buildings and lack of a natural landscape. Therefore, it is significant that Harris and Mann looked to the London Zoo for a model reptile house when designing the National Zoo’s Reptile House. Hanson references Frederick Law Olmsted, Sr., Forty Years of Landscape Architecture: Central Park, ed. Frederick Law Olmsted, Jr., and Theodora Kimball (reprint, Cambridge, MA: MIT Press, 1973), p. 514.
54 Ibid.
tour to observe the best zoos in Europe and were particularly impressed by the London Zoo’s reptile house. Harris used many of the technological advances employed in the London building, such as the use of skylights, Vita-glass, and UV lightbulbs to provide necessary warmth and UV light to the reptiles.55 This lighting technique had the added value of invoking the style of natural history museum dioramas at the time. With aquarium-style lighting, an informational label, and a plate glass label, each reptile enclosure not only simulated the reptile’s natural conditions but also acted as a living diorama of the environment from where the reptile came.56 Harris and Mann even contracted the same artists who decorated the most prominent natural history museums of the 1920s and 1930s to design the reptile cage interiors, including Charles R. Knight and Bruce Horsfall. By utilizing the engineering and architectural characteristics of other respected public institutions, Harris and Mann elevated the cultural cachet of the reptile and scientific authority of the National Zoo.

The National Zoological Park’s Reptile House rivaled the best zoo buildings in the United States and served as a model for other zoos. The building was lauded for its architectural style and its ability to properly house and maintain reptiles. The American Institute of Architects called the Reptile house the “Best Brick Building of the Year” and other American zoo directors wrote to Mann to inquire about how to replicate the success he had with the Reptile House.57 For example, in 1936 engineers working on the Cincinnati Zoo, Reptile House wrote to Mann for advice on which halogen lighting fixtures that provided heat to snakes. Both the Detroit Zoo and the Pittsburgh Zoological Park requested blueprints of the National Zoo Reptile House and its cages in 1938.58 By the 1940s the Bronx, National, Staten Island, Brookfield, San Diego, St. Louis, Toledo, San Antonio, Buffalo, and Philadelphia zoos had all followed suit and built large modern reptile houses as well.59 The construction of the National Zoo’s Reptile House was another step toward becoming Mann’s vision of a modern zoological park.

PART II ARCHITECTURAL INFORMATION

A. General statement:

1. Architectural Character: Albert Harris designed the Reptile House in a Romanesque style that borrows from churches in Northern Italy.60 The red brick building is church-like in construction, with a long rectangular footprint, gabled porch, and two-drum tower on top of crossed gabled roof. However, in place of traditional design features, Harris used reptile forms to decorate the building.

56 See Hanson, Animal Attractions, 152-154.
58 W. M. Mann to Nathan C. Wyeth, correspondence, June 6 1938, RU 74, box 225, SIA.; W. M. Mann to Ralph N. Griswold, correspondence, October 31, 1938, RU 74, box ; Harold N. Herman to W. M. Mann, correspondence, May 26, 1938, RU 74, box 225, SIA.
59 Donahue and Trump, American Zoos During the Depression, 45.
60 Hanson, Animal Attractions, 156.
Amorphous gargoyle-like reptile carvings in the entablature and capitals stand guard over while at the same time indicating who lives inside. The polychrome concrete work by John Joseph Earley provides another departure from the Romanesque style. The brightly colored concrete mosaics decorate the front entrance and Moorish arches around the building. Earley also provided polychrome concrete for the Bird House in 1926. The mosaic above the door by Charles Knight depicts a stegosaurus, which invokes the images appearing in natural history museums and books in 1930 when the work was designed. Unlike other National Zoological Park buildings, the Reptile House looks much like it did when it was built.

2. Condition of Fabric: The building fabric is in fair condition and has undergone renovations periodically to modernize and address structural issues.

B. Description of Exterior:

1. Overall dimensions: The reptile house is roughly 200’ long x 82” wide. It contains 136 cages ranging from 8” long for small frogs, to 80’ long for the crocodile enclosure.61

2. Foundations: The foundations are comprised of concrete and granite.

3. Walls: The bricks of the exterior are laid in 6:1 common bond. Pilasters topped with carved stone dragons in pilasters separate bays in the façade. The bays are topped with cast-stone Moorish arches on the southwest elevation. Each arch has a corbel with alternating gargoyle-like frogs, dragons, lizards, and iguanas. The arches continue around the building on the southeast and northwest, but are not present on the northeast, which, as the back of the building, is left plain. Inside each arch there are alternating colored stone inserts in the following pattern: blue circle inside green diamond, red diamond inside green circle, green circle inside blue diamond, red diamond inside green circle. These are likely polychrome cast concrete created by John Joseph Earley’s studio.62

The brick bay surrounding the front portico is laid in a diaper pattern of Flemish bond, topped by a blind arcade with nine round arches composed of brick voussoirs, acanthus leaf corbels, and herringbone brick design with alternating stars and diamonds inside each arch.

The wall surrounding the second front entrance has a section of alternating diagonal brickwork.

61 “A New Home for Reptiles,” 2.
62 The architectural detail sheets do not specify the material but the colors and use of Earley’s work on the Bird House and the front entrance indicate that they are likely the same.
4. **Structural system, framing:** The structural system is of load-bearing masonry. Reinforced concrete beams and slabs span the roof areas of the building. Steel trusses support the skylights.

5. **Porches, stoops, balconies, porticoes, and bulkheads:** The front entrance has a gable-front porch structure or portico. The shallow portico is supported by two Alicante marble columns and two pilasters. The columns are topped with carved Tennessee marble capitals, decorated with stylized foliage. The columns are supported by two fully modeled tortoise pedestals. The original drawing show 1-½” pipe dowels through the pillars and the turtle pedestals, and through the top of the pillars and the frog capitals.

 Above the columns are carved mirrored frogs below an arch entablature with amorphous pterodactyl hugging each flanking order. The arch consists of bonded verdella marble voussoirs, alternating white and pink. The ends of the white voussoirs are carved with thirteen alternating amorphous reptile reliefs in the pattern: lizard, turtle, frog, and snake.

 The pediment is filled with marble blocks, made of the same variety of marble, laid in regular courses. The gable return has ornamental stylized foliage and fleur-de-lis decoration. The structure has a flat stone roof, and decoration of the cornice continues on the side.

 The door is surrounded by columns in polychrome concrete. The patterns are chevron, diaper, bar, and quatrefoil in alternating red, blue, green, and red colors. The stone reveal has a saw tooth and fleur-de-lis pattern. The door surround repeats the blue, green and red quatrefoil pattern of the middle column.

 The secondary entrance has a recessed arched brick porch, supported by two marble columns. The column capitals are decorated with amorphous frog gargoyles and acanthus leaves.

 The rear elevation has a modern portico made of steel.

6. **Chimneys:** The only chimney on the reptile house is on the northeast elevation. It is original to the building and is shown in early drawing plans with a marble cap, however, the cap may be limestone. The chimney was used along with the building’s early boiler system, but it no longer needed with the modern HVAC system currently in place.

7. **Openings:**

 a. **Doorways and doors:** The Reptile House has two doors on the first floor southwest elevation, three doors on the northeast elevation, and one second floor door to the roof on both the northwest and southeast elevations. The entrances on the southwest were the original visitor doorways. The original
doorways were designed by Charles R. Knight. The main entrance doors have been removed and relocated inside the Reptile House. The two leaf doors are made of oak and each feature five decorative panels comprised of compo, a wood compound. From top to bottom, the panels feature stegosauruses, two encircled lizards, stegosauruses, two encircled lizards, and stegosauruses. The animals in the carved panels are painted gold. The background is dark oak, and the trim around each panel is green. The carved trim is a stylized leaf pattern with a quatrefoil at the corner of each panel. The hardware is a mix of original and modern. New locks have been installed but it appears that the handles may be original. The round drop door handles are comprised of two bronze entwined snakes, one on each door. Bronze head lag screws on a composite panel fix the handles to the door. The reveal and frame are painted white. The frame is carved wood with a guilloche pattern that also goes around the transom window. The transom window has a fixed arcade design, with a trefoil on top of each column and calves tongue, and chevrons around the edge of the transom.

The secondary front door on the southwest elevation is also a two leaf carved wood door. Each leaf has five panels, but the decoration is simpler than the main entrance doors. Each panel consists of molded concentric circles, inside uneven concentric octagons, surrounded by bronze studs. The drawings show that the doors were meant to have the same hardware as the main front entrance, but the hardware has been replaced. The door hangs on modern pin hinges and there are no hanging snake handles. A modern lock and door handle have been installed. The door has been refinshed with a high gloss. The door sits in a round arch frame and is decorated with red iguanas and stylized palm fronds, with a gold leaf background. The reveal is carved with lizards, frogs, guilloche, fleur-de-lis, and stylized foliage.

There are four doors on the northeast elevation. The door to the north of the chimney is a modern service door to the basement. The door is steel and glass. The original rear door on the northeast elevation has been replaced with a modern portico. The new door is modern steel and glass. The exterior doorway to the greenhouse was cut from the opening of a basement window. The door is steel. The sixth door, southeast of the greenhouse, is an original opening but the original wood door has been replaced by a steel door. There are three doors to the roof. The first is in the stairway to the offices. It is a metal rounded arch window. There is a modern steel and glass window on

63 The Commission on Fine Arts notes state that they made some recommendations for an alternate door design. This may account for the difference between the architectural detail and the existing doors. See, Minutes, Commission of Fine Arts, September 10, 1929, RG 66, NARA, Washington, D.C., 5-6.

64 The original drawings show additional decoration between the columns of the transom blind arcade. However, the current transom does not have this. It may have never existed or it may have been lost when the door, frame, and transom were moved.

both the northeast and southwest elevations.

b. Windows and shutters: There are eleven narrow window openings on the first floor; there are six on the northeast elevation and five on the southwest elevation. The windows are nearly identical; they are thin and rectangular with no applied ornamentation and a deep reveal. The windows have a projecting brick sill made of four header bricks and a five brick denture ornament over top. The windows have steel casement with four lights. There is a window in the center of each bay, corresponding with the exhibit space.

There are fifteen windows on the second floor. There are five arched windows in the crossed gable on both the northwest and southeast elevations, and three on the northeast elevation. The brick arches are flush with the surface. The windows are tall and thin with twelve lights and a steel sash. There are two additional hopper windows on the northwest elevation, also arched with twelve lights and steel sash, unevenly placed on either side of the center gable.

There are eight round windows with a steel sash and nine unevenly divided lights in the upper drum, referred to in the original drawings as the “muscariam.” They are surrounded by trim made of alternating brick and marble blocks.66 The center light is square with an operable bottom hung casement window; a fixed ladder provides access.

On the northwest elevation, there were five large rectangular windows on the basement level, each with twenty lights. There are now four windows; a door to the greenhouse replaces one of the window openings. The windows are currently unevenly divided two-light windows, steel sash.

8. Roof:

a. Shape, covering: The roof over the transept is hipped with cross gables. The two drum tower has a hipped octagonal tile roof. The rest of the roof is flat with parapets and glass and steel skylights. Areas of the roof that are visible from the ground are covered in terracotta tile. The flat part of the roof has modern roof pavers.

b. Cornice, eaves: Every wall has a corbelled brick cornice, but it differs from one section of wall to the next. The front entrance wall that forms the cross gable on the southwest elevation has a four-brick corbel, topped by an alternating triangle corbelled brick pattern. This pattern repeats around second floor walls, except on the walls that form of the southeast and northwest cross gables. Those walls have a plain cornice.

66 The material of the white tile in the trim is uncertain but the original drawings indicate it is marble.
c. Dormers, cupolas, towers: Two-drum octagonal tower which is referred to in
the drawings as a muscarium.

C. Description of Interior

1. Floor Plans: The Reptile House was designed in the Romanesque style of
architecture and the floor plan resembles churches in that style, with a nave and
transept footprint. The Reptile House has one main public floor accessible by the
northwest entrances. This first floor contains an oblong hallway with exhibits on
either side. The center exhibits encircle a private workspace, lab area, and rear
access to the center exhibit cages. The outer exhibits are backed by segmented
private work spaces and access doors to their exhibit cages, with the exception of
the alligator and giant tortoise exhibits. The end exhibit spaces sit on the outside
walls of the building, which allows the inhabitants to access extended outdoor
exhibit spaces. The basement has been used intermittently as exhibit space and
now houses animals not on exhibit, and plumbing and electrical systems. There is
a stairway to the basement and the second floor. The second floor is in the
transept area and is dividing into offices, a kitchen, locker rooms, a staff
restrooms, and a common lab and work area. A third staircase leads to the
‘muscarium’ tower.

2. Stairways: There are three staircases. The staircases to the basement, first and
second floor are utilitarian concrete with steel safety treads and metal pipe
handrail. The stairs are not accessible to visitors. The staircase to the muscarium
is metal with safety treads and a metal pipe handrail.

3. Flooring: Glazed brick tile appears in public space on first floor; the original
floors were terrazzo. Terrazzo is still used on second floor offices. Small-scale
ceramic tile appears in the staff bathroom and locker rooms. The cage spaces, lab
spaces, muscarium, and basement floors are all concrete. The floors and wainscot
in the secondary entrance vestibule are marble.

4. Wall and ceiling finish: The walls in the public aisles are plaster, with the
exception of the secondary entryway that has marble wainscoating. Modern
smooth pilasters separate galleries of exhibit windows in the northeast and
southwest hallways. The walls in the lab and exhibit spaces are concrete. The
second floor work space has plaster and concrete walls. The muscarium has
painted concrete walls. The original ceiling and cornice were plaster, with
suspended plaster ceiling and molded plaster beam. The arched ceiling was
sprayed with an acoustical compound during a renovation in 1961 to deaden the
echo.67 In the lab spaces on the first floor the ceilings are concrete with skylights
inset. The skylights correspond with the end exhibit cages and the center and side
lab areas. The ceiling in the second floor and salamander lab on the first floor are
gypsum board. The ceiling in the muscarium is concrete.

5. Openings:

a. Doorways and doors: Most of the interior doorways are utilitarian, with the majority being single metal doors. The doors leading to animal cage area and exhibits are fixed with electronic locking systems, accessible by security badge. The doors to the secondary entrance vestibule are double plate glass and wood, with double brass push bar handles, and a brass threshold. The original main entrance door has been placed inside, along with the transom window and wood trim, and serves as the northeast door to the ‘resource room.’

b. Windows: There are no windows are the public spaces. The windows on the first floor are accessible from the cage spaces and have been covered up by pine frames holding an insulation film. The sill and sash are not accessible. The second-floor windows are utilitarian, having a plain reveal with both fixed and operable lights. The muscarium windows have a deep reveal without trim and have evidence of a poor seal as the plaster below has water damage.

6. Decorative features and trim: The interior is mostly utilitarian without decorative features, allowing visitors to focus on the reptiles inside their lighted terrariums. The exceptions are in the two first floor vestibules. The main entrance has a marble turtle mosaic in the center of the floor. The original turtle mosaic design shows the turtle inside a circle, an eight-pointed star, and then a square. However, the current decoration is smaller with just the circle surrounding the turtle. There is also an abstract relief of two frogs on the northeast wall. Reptile cages have live and simulated foliage, rocks, ponds, and trees to simulate the reptiles’ natural environments. There are painted backgrounds in some of the exhibit cages but the original paintings from the 1930s have been painted over. The trim is utilitarian. The second-floor windows also have plain trim.

7. Hardware: Hardware is sparse and utilitarian. A brass pipe handrail sits in front of the crocodile exhibit windows. A similar handrail used to run in front of all of the exhibit windows but it has been removed. Other hardware in the Reptile House relates to openings, either as hinges and latches for doors, including lever handles, door knobs, surface-mounted hinges, kick plates, door pulls and push bars, door closures, door stops, deadbolt locks, and padlocks.

8. Mechanical equipment: The Reptile House has a modern HVAC system, plumbing, and electricity. The Reptile House’s original heating and plumbing systems were advanced for the time, as the visitors were kept cool while the

68 The origins of this relief are unknown. It does not appear in original drawings, is not signed, and does not resemble the other decoration by Charles Knight.
69 The crocodile and alligator swamp was designed in coordination with Knight. See William Mann to Charles Knight, correspondence, August 11, 1930, RU 74, box 225, SIA.
snakes and reptiles were kept warm.

9. Original furnishings: The slate lab tables in the cage areas are original to the building. The portable cages are likely not original, however the exhibit spaces are laid out as they were when the building opened in 1931.

D. Site

1. Historical landscape design: The notable landscape firm Frederick Law Olmsted & Co. created the first designs for the National Zoological Park within the Rock Creek Park landscape. The design was rustic and picturesque, emphasizing the natural surroundings of the Rock Creek Park landscape, following the natural terrain. In the late nineteenth century, Americans established parks of all kinds including local meadows, national parks like Niagara Falls (1885) and Rock Creek Park (1890), and zoological parks and gardens in an attempt to conserve a seemingly disappearing American frontier. The landscape National Zoological Park, therefore, was designed to offer an escape from Victorian-era urbanization.

By the time architect Albert Harris completed the Reptile House in 1931, the National Zoo had turned away from its naturalistic vision and toward one that emphasized decorative architecture. Architect Albert Harris and Zoo director William Mann turned the landscape of the zoo away from its nature preserve beginnings and toward a zoological garden similar to those found in Europe. The redesign of the Zoo’s landscape included making it pedestrian only space. The Commission of Fine Arts tentatively approved the plans for the Reptile House on September 10, 1929 in conjunction with the suggestion to banish cars from the Zoo, and increase its size.

Albert Harris considered with the Commission the question of a landscape plan for the Zoological Park that would show present and future buildings and also a plan for walks and parking space at the entrance to the Park. The Commission concurred in the Harris’ suggestion that visitors should be required to walk through the Park. Harris further recommended that the Zoological Park be extended up the Piney Branch Parkway towards Sixteenth Street, allowing places for animal cages there, and in this the Commission concurred.

The orientation, placement, and landscape design surrounding the Reptile House reflected the upcoming changes that limited motorized vehicle entry to the Zoo. Harris and Zoo director William Mann chose a site that was occupied by an eagle cage (1906-1929) in the eastern valley area next to the Monkey House (1906).

70 The only exceptions are in east end of the center exhibit space, the resource room, and the salamander lab, which have all been added or renovated from the original plans. See, “Historic Resource Analysis.”

71 Price, Bird House, HABS No. DC-777-D; Farrell. Also see, “Smithsonian Institution National Zoological Park: A Historic Resource Analysis.”

72 Minutes, Commission of Fine Arts, September 10, 1929, RG 66, Washington, D.C, 5-6

73 Price, Bird House, HABS No. DC-777-D.
The Reptile House faces southwest toward other buildings along what is now called the “Olmsted Walk.” There was a semicircle walkway leading to the two front doors of the Reptile House, and a grass lawn with ornamental shrubs and trees. Post fencing encircled the lawn to discourage visitors from walking on the lawn.\(^74\) The building sits on a gently sloping hill that drops in elevation to the north and east. The main floor and second floor are above grade in the front elevation, and the basement is exposed and fully accessible in the rear elevation. The original landscape design include steps along the walkway on the northwest and southeast sides of the building as the elevation dropped; however, the walkway was regraded and made into a handicap accessible ramps and sidewalks in a subsequent redesign of the landscape.

Additional modification of the landscape included creating open-air crocodile and tortoise enclosures by fencing off areas surrounding the building that had previously been used as decorative yard. The outdoor crocodile enclosure required a more extensive renovation to ensure that the animals would be effectively separated from visitors. The landscaped area takes up all of the space between the two front entrances. The enclosure has a moat and an inward turning fence to deter crocodiles from exiting the area. A walkway and free standing awning run parallel to the outdoor enclosure to give visitors a close encounter with the animals. The tortoise yard is on the southwestern corner of the building. The tortoises exit the building to the flat, grassy yard from their enclosure on the other side of the wall. Faux rockwork forms a barrier between the tortoises and visitors.

2. Outbuildings: In 1980–1981 the Zoo added a series of three small exhibits and four outdoor displays containing pools that now hold crocodilians and Komodo Dragons. The exhibits were constructed of concrete masonry and are northwest of the Reptile House in the rear elevation. These exhibits are accessible by a wooden walkway that begins northwest of the outdoor tortoise yard.

 In 1991 a greenhouse was constructed on the northeast elevation that served as a butterfly garden, until 2014. The greenhouse is constructed of steel, glass and concrete and is attached to the Reptile House.

PART III. SOURCES OF INFORMATION

A. Architectural drawings:

 The National Zoo maintains original and facsimile copies of the Zoo’s original building plans, including those for the Reptile House. The Zoo also maintains blueprints from each subsequent renovation of the Reptile House. The Smithsonian Institution Archives

maintains blueprints of the Reptile House as well. The National Archives has maps for the zoo grounds (RG 66), and further examination of those files may yield drawings submitted to the Commission of Fine Arts.

B. Early Views:

The Architectural History and Historic Preservation division of the Smithsonian Institution has some early views of Reptile House (RU 95) and the grounds of the Zoo on file. The National Archives also maintains clippings (RG 66) that show construction of the Reptile House.

C. Bibliography:

a. Repositories

American Institute of Architects, Washington, DC

The library and archives maintains files of the Institute's fellows as well as books and periodicals befitting an architectural research collection.

Commission of Fine Arts, Washington, DC

Records relating to the Commission are kept in that office as well as in the National Archives, Washington, D.C. within Record Group 66.

Smithsonian Institute Libraries and Archives, Washington, DC

The Smithsonian libraries are concentrated within the various museums (and within those, departments) so to provide the curators and researchers with on-site reference materials directly relating to the subject and area of study. Each library maintains special collections, secondary sources, pertinent journals, reports, and images or other archival material as appropriate.

b. Selected Sources

Mann, William M. “A Visit to European Zoos.” Explorations and Field-Work of the Smithsonian Institution in 1929, 1930.

D. Likely Sources Not Yet Investigated:

Archives at the District of Columbia Office of Public Records were unavailable for review, but may contain information on the architect and the former office of Municipal Architect.
Part IV: Project Information:

The recording project was jointly sponsored by the Smithsonian Institution, National Zoological Park, and by the Historic American Buildings Survey (HABS) branch, Catherine C. Lavoie, Chief, of the National Park Service’s Heritage Documentation Programs, Richard O’Connor, Manager. Project planning was guided by Catherine Lavoie, Lisa Davison, and Mark Schara of HABS; and Nancy Levan, Historian, National Zoological Park. The field measurements and measured drawings were completed by HABS Architects Mark Schara, Paul Davidson, and Daniel De Sousa. The 3-D model was drawn by Paul Davidson and Daniel De Sousa. Large format photography was completed by Jarob Ortiz, HABS HAER Photography. The historical report was written by Katlyn Burns Yancho, Presidential Management Fellow, on detail from the Bureau of Land Management.
The Following drawings were created by architect Albert Harris, September 12, 1929. They are located within the Smithsonian Archives, Record Unit 74, Accession 08-061, Building Series 9.

Figure 1: Reptile House, National Zoological Park; Sheet 1 of 24: Basement Plan, Site Plan and Entrance.

Figure 2: Reptile House, National Zoological Park; Sheet 2 of 24: First Floor Plan, Second Floor Plan, and Plan of Muscarium.
Figure 3: Reptile House, National Zoological Park; Northwest, Northeast and Southwest Elevations.

Figure 4: Reptile House, National Zoological Park; Sheet 5 of 24: Sections.
Figure 5: Reptile House, National Zoological Park; Sheet 5 of 24: Details of Exterior and Interior.

Figure 6: Reptile House, National Zoological Park; Sheet 6 of 24: Details of Iron Stairs from Laboratory to Muscarium.
Figure 9: Reptile House, National Zoological Park; Sheet 11 of 24: Framing Plan.

Figure10: Reptile House, National Zoological Park; Sheet 12 of 24: First Floor Framing Plan.
Figure 11: Reptile House, National Zoological Park; Sheet 13 of 24: Framing Plan.

Figure 12: Reptile House, National Zoological Park; Sheet 14 of 24: Framing Plan.
Figure 13: Reptile House, National Zoological Park; Sheet 15 of 24: Second Floor and Low Roof Framing Plan